Math.- Nat. Fakultät Institut für Physik in english

alles unter Vorbahlt von COVID-19 Maßnahmen
Beachten Sie die Hinweise in den jeweligen Veranstaltungen

Sommersemester 2021
Stand: 04.05.21 15:30:10

KVL / Klausuren / MAP 1.HS: 12.04  2.HS: 31.05  Zw.Sem.: 19.07  Beginn WS: 12.04

4020210036 Advanced Optical Sciences  VVZ 

Mo 13-14
wöch. nV or digital (0) Markus Krutzik, Tim Schröder, Sven Ramelow, Francesco Intravaia, Kurt Busch, Alejandro Saenz
Mo 11-13
wöch. nV or digital (0) Markus Krutzik, Tim Schröder, Sven Ramelow
Fr 15-17
wöch. nV or digital (0)

Digital- & Präsenz-basierter Kurs

Lern- und Qualifikationsziele
Die Studierenden erwerben vertiefte Kenntnisse wichtiger theoretischer Entwicklungen und Schlüsselexperimente der modernen Optik und sind in der Lage, diese Kenntnisse für die Lösung einschlägiger Probleme zur Anwendung zu bringen.
Gliederung / Themen / Inhalte
chlüsselexperimente der modernen Optik (z.B. Arbeiten, die zu Nobelpreiasen mit direktem Bezug zur Optik geführt haben).Theoretische Grundlagen dieser Schlüsselexperimente.

Part I
The first part of the course introduces single optical and atomic quantum systems. In particular atom-like defects in solid-state materials and their coupling to quantized electromagnetic fields will be introduced. This includes (i) Single Photons & Single Emitters, (ii) Cavity QED in the Weak Coupling Regime, (iii) Diamond Defect Centers as Optical Quantum Probes, (iv) Diamond Defect Centers as Magnetic Quantum Probe, and (v) Quantum Information Processing in Diamond. Focus will be on recent developments and state-of-the-art experiments

Part II
The second part is dedicated to the topic of closing loopholes in Bell-experiments, which is crucially relevant for the interpretation of quantum mechanics. It includes an introduction to the concepts of the EPR-paradox, local-realism and Bell-Inequalities, and gives a brief overview over the key experiments and experimental methods to violate a Bell-Inequality while closing all possible loopholes.

Part III
Ultra-cold atom research led to several Nobel prizes in physics, amongst others, honoring the creation of the Bose-Einstein condensate – A phenomenon described by coherently oscillating atoms which expand with temperatures that correspond to billionths of a degree above absolute zero only. In this part of the lecture, we will study the basics of cold atom technology and discuss why this is an important step forward in our ability to study and control the fundamental building blocks of nature, as well as for driving innovations in metrology, timing and field sensing applications.
Zugeordnete Module
P24.4.c P32
Umfang, Studienpunkte; Modulabschlussprüfung / Leistungsnachweis
6 SWS, 12 SP/ECTS (Arbeitsanteil im Modul für diese Lehrveranstaltung, nicht verbindlich)
Klausur, 120 Minuten, oder mündliche Prüfung, 30 Minuten, und Vorbereitung
Dr. Markus Krutzik, 1'707,
executed on vlvz2 © IRZ Physik, Version 2019.1.1 vom 24.09.2019 Fullscreen