SS 2026 WS 2025
SS 2025
SS 2024 WS 2024
Department of Chemistry
open physics
KVL / Klausuren / MAP 1st HS: 14.04  2nd HS: 02.06  sem.br.: 19.07  begin WS: 11.10

4020250027 Group theory in Physics      VVZ  

VL
Wed 11-13
weekly ZGW 2 1.207 (56) Rob Klabbers
Fri 11-12
weekly ZGW 2 1.207 (56)
UE
Fri 12-13
weekly ZGW 2 1.207 (56) Rob Klabbers

Präsenzkurs

classroom language
EN
aims
Students learn about the theory of Lie groups and Lie algebras and can apply this in the context of elementary particle physics and quantum field theory. Note that every second week, the lecture is replaced by an exercise class.
requirements
Solid knowledge of linear algebra and multivariable calculus. Knowledge of quantum physics is helpful when discussing applications in physics.

This masters level course could also be accessible to and useful for advanced bachelors students.
structure / topics / contents
Structure of groups, finite groups, Lie groups, representations of groups, group theory and quantum mechanics, applications in molecular physics and solid state physics, Lie algebras, 3-dimensional rotation groups, semisimple complex Lie algebras, semisimple real Lie algebras, classical Lie algebras (su(n), so(n), sp(2n)), Representations of Lie algebras, roots and weights, Dynkin diagrams, Young diagrams, characters, classification of Lie algebras, exceptional algebras, Lorentz-Poincaré and conformal algebras and groups, applications in the theory of elementary particles and quantum field theory, Lie superalgebras and supergroups, infinite-dimensional Lie algebras.
assigned modules
P25.1.b
amount, credit points; Exam / major course assessment
4 SWS, 6 SP/ECTS (Arbeitsanteil im Modul für diese Lehrveranstaltung, nicht verbindlich)
Written exam (3 hours maximum) or oral exam (30 min maximum)
literature
Brian C. Hall. Lie Groups, Lie Algebras, and Representations. Springer
Anfragen/Probleme executed on vlvz2 © IRZ Physik, Version 2019.1.1 vom 24.09.2019 Fullscreen