WS 2020 SS 2020
WS 2019
WS 2018 SS 2019
Department of Chemistry
open physics
KVL / Klausuren / MAP 1st HS: 14.10  2nd HS: 09.12  sem.br.: 17.02  begin SS: 12.04

4020195028 Discrete Quantum Optics      VVZ  

VL
Mon 9-11
weekly NEW 14 1'14 (24) Kurt Busch, Armando Perez-Leija
UE
Wed 15-17
weekly NEW 14 1'09 (32) Kurt Busch, Armando Perez-Leija, Konrad Tschernig

Präsenzkurs

classroom language
DE
aims
Upon completion of the course, students will be able to analyze optical processes taking place in integrated photonic devices in a quantum mechanical framework. The students will be familiar with the main quantum mechanical concepts that will allow them to pursue more advanced topics in quantum optics, semiconductor and solid-state physics, and modern optoelectronic and nanophotonic devices.
requirements
The material of the Bachelor of Physics, especially Electrodynamics, Optics, and Basic Quantum Physics
structure / topics / contents
- Review of Quantum Mechanics and 1D Problems with
focus on numerics
- Operator Algebra and Quantization of the
Electromagnetic field
- Fundamental Concepts and Devices of Discrete
Quantum Optics
- Propagation of Single Photons and Nonclassical
Light in integrated multiport Structures
assigned modules
P25.4.b P35.1 P35.3
amount, credit points; Exam / major course assessment
4 SWS, 6 SP/ECTS (Arbeitsanteil im Modul für diese Lehrveranstaltung, nicht verbindlich)
Successful participation in the exercises and oral or written exam.
contact
Dr. Armando Perez-Leija (Max-Born-Institut, Haus A, Raum 2.18, Tel.: 6392-1261, armando.perez@mbi-berlin.de )
literature
John David Jackson. Mathematics for Quantum Mechanics. Dover (1962)
Cristopher Gerry and Peter L. Knight. Introductory Quantum Optics. Cambridge University (2005)
Rodney Loudon. The Quantum Theory of Light. Oxford University Press (2000)
Markus Graefe et al.. Integrated Photonic Quantum Random Walks. J. of Optics, Topical Review, in press (2016)
Thomas Meany et al.. Laser written Circuits for Quantum Photonics. Laser & Photonics Reviews 9(4), 363-384 (2015)
quod vide:
http://www.physik.hu-berlin.de/top/teaching
Anfragen/Probleme executed on vlvz2 © IRZ Physik, Version 2019.1.1 vom 24.09.2019 Fullscreen