WS 2020 SS 2020
WS 2019
WS 2018 SS 2019
Department of Physics
open chemistry
KVL / Klausuren / MAP 1st HS: 14.10  2nd HS: 09.12 17.02  begin SS: 12.04

4020195068 Basics and methods of modern crystal growth  VVZ 

Wed 11-13
weekly NEW 15 2'102 (24) Thomas Schröder, Radhakrishnan Sumathi, Jens Martin
Thu 9-11
14-day NEW 15 2'101 (24) Jens Martin

Digital- & Präsenz-basierter Kurs

Insights into novel questions of material science

Discussion of novel applications of specialized crystals

Critical thinking

Providing background knowledge to conduct Master thesis at IKZ
Introduction to Solid State Physics

BSc in physics, material science or nano science
Structure / topics / contents
“Modern applications in our daily life rely on high performance electronic and photonic technologies based on state-of-the-art crystalline materials. In this course, we give an overview on modern growth techniques based on volume crystals (Czochralski, Floating-Zone etc.) and thin film techniques (Chemical Vapor Deposition, Molecular Beam Epitaxy etc.) as well as on 2D layer deposition methods for graphene, transition metal chalcogenides etc. Special attention will be given to current hot topics in this exciting field with respect to basic research challenges as well as technological applications.”
Assigned modules
SG Ph P24.2.d
Amount, credit points; Exam / major course assessment
3 SWS, 6 SP/ECTS (Arbeitsanteil im Modul für diese Lehrveranstaltung, nicht verbindlich)
Final test
Possibility to conduct practica and master thesis at IKZ

Lab-Tour through IKZ
Thomas Schröder (, Radhakrishnan Sumathi (, Jens Martin (
B. R. Pamplin (Ed.). Crystal Growth. Pergamon Press, Oxford 1975.
F. E. Rosenberger. Fundamentals of Crystal Growth I. Springer, Berlin 1981
D. T. J. Hurle (Ed.). Handbook of Crystal Growth, I & II. Elsevier 2015, II Edition
P. AVOURIS, T.F. HEINZ, T. LOW. 2D Materials, Properties and Devices. Cambridge University Press, Materials Research Society 2017
Ivan V Markov. Crystal Growth for Beginners. World Scienctific 2017, III Edition
Quod vide:
executed on vlvz2 © IRZ Physik, Version 2019.1.1 vom 24.09.2019 Fullscreen